SVHN Digit Recognition 🏘️🔢
🚀 Project Overview
Classify street-level digits using deep learning! This project uses a subset of the SVHN dataset (600k+ labeled images) to experiment with Feedforward Neural Networks (FNNs) and Convolutional Neural Networks (CNNs), aiming to find the most accurate model for digit recognition.
📊 Highlights
Dataset: .h5 format, 32×32 RGB images
Models Tested: FNNs & CNNs
Results: CNNs outperform FNNs with high accuracy
Visuals: Prediction vs. Ground Truth comparisons
🛠️ Tech Stack
Python 3.x | TensorFlow / Keras
NumPy, Pandas | Matplotlib / Seaborn
h5py for dataset handling
🎯 Quick Start git clone https://github.com/rishovm/Pixel2Number.git cd svhn-digit-recognition pip install -r requirements.txt python train_model.py python evaluate_model.py
🔮 Future Work
Train on full SVHN dataset for max performance
Use data augmentation for robustness
Explore ResNets or Transformers for digits
✨ Author
Dr. Rishov Mukhopadhyay