Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 29 additions & 0 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -28,3 +28,32 @@ jobs:
- name: Test imports
run: |
python -c "import comlrl; print('✓ comlrl imported successfully')"

unit-tests:
name: Unit Tests
runs-on: ubuntu-latest
env:
COMLRL_TEST_MODEL_NAME: Qwen/Qwen2.5-0.5B
COMLRL_TEST_MODEL_NAME_ALT: Qwen/Qwen3-0.6B
COMLRL_TEST_CRITIC_MODEL_NAME: Qwen/Qwen3-0.6B-Instruct
TOKENIZERS_PARALLELISM: "false"
steps:
- uses: actions/checkout@v4

- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: 'pip'

- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install --no-cache-dir setuptools-scm>=8.0.0
pip install --no-cache-dir -r requirements.txt
pip install --no-cache-dir pytest
pip install --no-cache-dir -e . --no-deps

- name: Run unit tests
run: |
pytest -q
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
[![PyPI downloads](https://img.shields.io/pypi/dm/comlrl.svg?logo=)](https://pypi.org/project/comlrl/)

[![CI](https://github.com/OpenMLRL/CoMLRL/actions/workflows/ci.yml/badge.svg)](https://github.com/OpenMLRL/CoMLRL/actions/workflows/ci.yml)
[![Tests](https://github.com/OpenMLRL/CoMLRL/actions/workflows/ci.yml/badge.svg?label=tests)](https://github.com/OpenMLRL/CoMLRL/actions/workflows/ci.yml)
[![pre-commit.ci](https://github.com/OpenMLRL/CoMLRL/actions/workflows/pre-commit.yml/badge.svg)](https://github.com/OpenMLRL/CoMLRL/actions/workflows/pre-commit.yml)
[![Docs Build](https://github.com/OpenMLRL/CoMLRL/actions/workflows/docs-build.yml/badge.svg)](https://github.com/OpenMLRL/CoMLRL/actions/workflows/docs-build.yml)
[![code style: black](https://img.shields.io/badge/code%20style-black-000000.svg?logo=black&logoColor=lightgrey)](https://github.com/psf/black)
Expand Down Expand Up @@ -122,7 +123,7 @@ Please cite the following papers if you find this library useful in your researc

```bibtex
@inproceedings{liu2025llmcollabmarl,
title = {{LLM} Collaboration With Multi-Agent Reinforcement Learning},
title = {LLM Collaboration With Multi-Agent Reinforcement Learning},
author = {Liu, Shuo and Liang, Zeyu and Lyu, Xueguang and Amato, Christopher},
booktitle = {Proceedings of the 40th Annual AAAI Conference on Artificial Intelligence},
year = {2026}
Expand Down
11 changes: 10 additions & 1 deletion comlrl/trainers/actor_critic/ac_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,16 @@ def _resolve_model_sources(
expected_label: Optional[str] = None,
) -> Tuple[List[Any], Optional[str]]:
if model is not None and models is not None:
raise ValueError(f"Cannot provide both model and {kind}.")
is_name_list = (
isinstance(models, Sequence)
and not isinstance(models, (str, bytes))
and all(isinstance(src, str) for src in models)
)
if not is_name_list or len(models) != expected_count:
label = expected_label or f"num_agents ({expected_count})"
raise ValueError(
f"Cannot provide both model and {kind} unless {kind} is a list of {label} model names."
)
if model is None and models is None:
raise ValueError(f"Either model or {kind} must be provided.")
if expected_count < 1:
Expand Down
6 changes: 0 additions & 6 deletions comlrl/trainers/actor_critic/iac.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,8 +136,6 @@ def __init__(
raise ValueError("A callable reward_func must be provided.")
if model is None and agents is None:
raise ValueError("Either model or agents must be provided.")
if model is not None and agents is not None:
raise ValueError("Cannot provide both model and agents parameters.")

self.args = args if args is not None else IACConfig()
if not self.args.use_separate_critic and critics is not None:
Expand All @@ -153,9 +151,6 @@ def __init__(
self.critic_type = (self.args.critic_type or "v").lower()

self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not torch.cuda.is_available():
# CPU fallback is allowed for experimentation but will be slow.
print("Warning: CUDA not available. Training will run on CPU.")

self.agent_models: List[CausalLMWithValueHead] = []
self.critic_models: List[Optional[CausalLMWithValueHead]] = []
Expand Down Expand Up @@ -191,7 +186,6 @@ def __init__(
models=agents,
expected_count=self.args.num_agents,
)

for actor_source in actor_sources:
agent_model = self._load_agent_model(actor_source)
agent_model.to(self.device)
Expand Down
4 changes: 0 additions & 4 deletions comlrl/trainers/actor_critic/maac.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,8 +112,6 @@ def __init__(
raise ValueError("A callable reward_func must be provided.")
if model is None and agents is None:
raise ValueError("Either model or agents must be provided.")
if model is not None and agents is not None:
raise ValueError("Cannot provide both model and agents parameters.")
self.args = args if args is not None else MAACConfig()
self.reward_func = reward_func
self.reward_processor = reward_processor or (lambda x: x)
Expand All @@ -123,8 +121,6 @@ def __init__(
self.model_config = model_config or {}

self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not torch.cuda.is_available():
print("Warning: CUDA not available. Training will run on CPU.")

if agents is not None and tokenizer is None:
raise ValueError("Tokenizer must be provided when agents are passed.")
Expand Down
83 changes: 51 additions & 32 deletions comlrl/trainers/reinforce/magrpo.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import random
from dataclasses import dataclass
import itertools
from typing import Any, Callable, Dict, List, Optional, Union, Tuple, Type
from typing import Any, Callable, Dict, List, Optional, Union, Tuple, Type, Sequence

import numpy as np
import torch
Expand Down Expand Up @@ -134,16 +134,21 @@ def __init__(
eval_aggregator: Optional[Callable] = None,
args: Optional[MAGRPOConfig] = None,
):
# Check for GPU availability
if not torch.cuda.is_available():
raise RuntimeError(
"GPU not found. MAGRPOTrainer requires GPU for training."
)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

if model is None and agents is None:
raise ValueError("Either model or agents must be provided")
agents_is_name_list = (
agents is not None
and isinstance(agents, Sequence)
and not isinstance(agents, (str, bytes))
and all(isinstance(src, str) for src in agents)
)
if model is not None and agents is not None:
raise ValueError("Cannot provide both model and agents parameters")
if not agents_is_name_list or len(agents) != num_agents:
raise ValueError(
"Cannot provide both model and agents unless agents is a list of num_agents model names."
)

self.args = args if args is not None else self.default_config_cls()
self.env_step = 0
Expand All @@ -155,37 +160,51 @@ def __init__(
self._setup_formatters(formatters, num_agents)
self._setup_reward_function(reward_func, reward_processor)

self.model_config = model_config if model_config else {}
model_kwargs = {}
torch_dtype = None
if isinstance(self.model_config, dict):
torch_dtype = self.model_config.get("torch_dtype") or self.model_config.get(
"dtype"
)
if torch_dtype is not None:
model_kwargs["torch_dtype"] = torch_dtype

if agents is not None:
self.agents = agents
self.num_agents = len(agents)
if (
hasattr(agents[0], "base_model")
and hasattr(agents[0].base_model, "config")
and hasattr(agents[0].base_model.config, "model_type")
):
self.model_name = agents[0].base_model.config.model_type
elif hasattr(agents[0], "config") and hasattr(
agents[0].config, "_name_or_path"
):
self.model_name = agents[0].config._name_or_path
else:
self.model_name = agents[0].__class__.__name__
if agents_is_name_list:
from transformers import AutoModelForCausalLM, AutoTokenizer

self.model_config = model_config if model_config else {}
self.agents = [
AutoModelForCausalLM.from_pretrained(name, **model_kwargs)
for name in agents
]
self.num_agents = len(agents)
self.model_name = agents[0]
if tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(agents[0])
special_tokens = self.model_config.get("special_tokens", {})
if special_tokens:
self.tokenizer.add_special_tokens(special_tokens)
else:
self.agents = agents
self.num_agents = len(agents)
if (
hasattr(agents[0], "base_model")
and hasattr(agents[0].base_model, "config")
and hasattr(agents[0].base_model.config, "model_type")
):
self.model_name = agents[0].base_model.config.model_type
elif hasattr(agents[0], "config") and hasattr(
agents[0].config, "_name_or_path"
):
self.model_name = agents[0].config._name_or_path
else:
self.model_name = agents[0].__class__.__name__
else:
self.model_config = model_config if model_config else {}
self.num_agents = num_agents
if isinstance(model, str):
from transformers import AutoModelForCausalLM, AutoTokenizer

model_kwargs = {}
torch_dtype = None
if isinstance(self.model_config, dict):
torch_dtype = self.model_config.get(
"torch_dtype"
) or self.model_config.get("dtype")
if torch_dtype is not None:
model_kwargs["torch_dtype"] = torch_dtype
self.agents = [
AutoModelForCausalLM.from_pretrained(model, **model_kwargs)
for _ in range(num_agents)
Expand Down Expand Up @@ -704,7 +723,7 @@ def train(self, **kwargs):
if self.wandb_config is not None and not self.wandb_initialized:
self._init_wandb()

device = torch.device("cuda")
device = self.device
for agent in self.agents:
agent.to(device)
agent.train()
Expand Down
3 changes: 1 addition & 2 deletions docs/content/docs/user-guide/ac-finetuning.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@ J(\theta_i) = \mathbb{E}_{o_{i,0} \sim \mathcal{D}, h_i \sim \pi_{\theta_i}}\lef

where {{< katex inline=true >}}\delta_{i,t} = r_{i,t} + \gamma V_{\phi_i}(h_{i,t+1}) - V_{\phi_i}(h_{i,t}){{< /katex >}} is the (single-step) temporal difference error and {{< katex inline=true >}}\gamma{{< /katex >}} is the discount factor. Use `critic_type='q'` to switch to a Q-value critic {{< katex inline=true >}}Q(h_t, a_t){{< /katex >}}; the default is `critic_type='v'`.

where {{< katex inline=true >}}\hat{V}_t{{< /katex >}} is the value target and {{< katex inline=true >}}\epsilon_v{{< /katex >}} corresponds to `value_clip_range`.

CoMLRL supports two IAC architectures for critic implementation:

Expand Down Expand Up @@ -81,7 +80,7 @@ L(\phi_i) = \max\Big( (V_{\phi_i}(h_t) - \hat{V}_t)^2,\ (V_{\phi_i}^{\text{clip}
{{% /hint %}}

{{% hint warning %}}
For simplicity, IAC computes the policy gradient using the current policy's samples without importance sampling or ratio clipping. Shared-critic mode (`use_separate_critic=false`) can be less stable; `value_clip_range` only applies in that mode.
For simplicity, IAC computes the policy gradient using the current policy's samples without importance sampling or ratio clipping. In shared-critic mode (`use_separate_critic=false`), value heads are attached to the actor models (do not pass `critics`; passing them raises an error), and agents may be homogeneous or heterogeneous; this mode can be less stable, and `value_clip_range` only applies there. In separate-critic mode (`use_separate_critic=true`), pass a `critics` list with length equal to `num_agents`; critic models may differ from actor models.
{{% /hint %}}

{{% hint warning %}}
Expand Down
Loading